OpenTSI Open Telescope Software Interface

An open specification of a TPL2 based interface to position a telescope

Version 1.0

Document Id: 4PI-DOC-03-008-03-0

Michael Ruder, Daniel Plasa

Revision 252 as of August 13, 2009 (michael)

Revision History:

08.05.2005Initial Version (alpha) (dp)27.09.2005Finalized alpha version (dp,mr)24.10.2005Added support for multiple pointing models (mr)27.10.2005Finalized beta version (mr,dp)01.07.2007Finalized version (mr)(C)2002-2010 by 4π systeme, all rights reserved.\$Identifies a state of the state of the

\$Id: OpenTSI.tex 252 2009-08-13 17:53:57Z michael\$

Contents

1	Pre	face	1					
2	Bas	asics 1						
3	List	of Basic Modules	1					
4	Оре	erating the Telescope	2					
5	The	e TELESCOPE module	3					
	5.1	The TELESCOPE.INFO submodule	4					
	5.2	The TELESCOPE.CONFIG submodule	4					
		5.2.1 The TELESCOPE.CONFIG.FOCUS_MODEL submodule	6					
		5.2.2 The TELESCOPE.CONFIG.PORT[] submodule	6					
	5.3	The TELESCOPE.STATUS submodule	7					
6	The	e OBJECT module	9					
	6.1	The TRAJECTORY submodules	10					
	6.2	The OBJECT.INSTRUMENTAL submodule	10					
	6.3	The OBJECT.HORIZONTAL submodule	11					
	6.4	The OBJECT.EQUATORIAL submodule	12					
	6.5	The OBJECT.ELEMENTS submodule	13					
	6.6	The OBJECT.SOLARSYSTEM submodule	13					
	6.7	The OBJECT.CATALOG submodule	14					
7	The	e POINTING module	14					
	7.1	The POINTING.SETUP submodule	16					
		7.1.1 The POINTING.SETUP.LOCAL submodule	17					
		7.1.2 The POINTING.SETUP.ENVIRONMENT submodule	18					
		7.1.3 The POINTING.SETUP.FOCUS submodule	18					
		7.1.4 The POINTING.SETUP.DEROTATOR submodule	19					
		7.1.5 The POINTING.SETUP.FILTER submodule	19					
		7.1.6 The POINTING.SETUP.DOME submodule	19					
	7.2	The POINTING.MODEL submodule	20					
		7.2.1 The POINTING.MODEL.CLASSIC submodule	22					
		7.2.2 The POINTING.MODEL.EXTENDED submodule	22					

8	The	POSITION module	24						
	8.1	The POSITION.LOCAL submodule	24						
	8.2	The POSITION.INSTRUMENTAL submodule	25						
	8.3	The POSITION.HORIZONTAL submodule	27						
	8.4	The POSITION.EQUATORIAL submodule	27						
9	The	AUXILIARY module	27						
	9.1	The AUXILIARY.COVER submodule	27						
	9.2	The AUXILIARY.DOME submodule	28						
	9.3	The AUXILARY.PADDLE submodule	28						
	9.4	The AUXILIARY.SENSOR[] submodule	29						
	9.5	The AUXILIARY.SWITCH[] submodule	29						
A	Form	nula for the simple thermal focus correction	29						
в	Form	nulas of the different Pointing Models	30						
	B.1	Azimuthal mounted telescopes	30						
		B.1.1 The Classic Model	30						
		B.1.2 The Extended Model	30						
С	Eve	nts	31						
Re	References 32								

1 Preface

This document describes a high level interface for positioning and controlling of a telescope. For the communication the TPL2 protocol shall be used (refer to [2] for protocol specifications). In contrast to OpenTCI (see [1]) which mainly covers detailed control of the telescope hardware itself, OpenTSI is designed to provide a hardware independent interface to operate a telescope.

2 Basics

- The OpenTSI defines a list of modules which will give an ordered, hierarchical hardware independent access to all important high level telescope functions.
- A generic error handling interface is specified to determine the telescope ability to operate.
- Observable objects include sidereal objects, planets, moons, orbital elements and free definable time-position trajectories.
- A wide variety of coordinate systems can be used to both specify observable targets and transform between different systems.
- In addition to these basic modules there may be additional modules covering individual needs and functions. These modules shall be described in separate documents.

3 List of Basic Modules

The following modules are specified by the current version of the OpenTSI:

Name	Function
TELESCOPE	Status and general setup of the telescope.
OBJECT	Target object specification in various coordinate systems.
POINTING	Setup and control of pointing/tracking.
POSITION	Positions of all axes of the telescope.
AUXILIARY	Control of auxiliary components of the telescope.

Every module must have at least the VERSION variable. This variable shall give the client information whether the module is useable (> 0) on the current telescope. It will provide the client also with an interface version, an interface age and a revision number (packed into one number), giving the client information about the structure

of the interface layout:

- The interface version will be increased whenever variables are added or removed or the functionality of variables is changed.
- The interface age allows clients to check if the expected interface version can be used even if the interface version is different from the expected version. The age is computed as maximum supported interface version minus minimum supported version.

Example: interface version is 3 but all variables of version 2 are still in place to stay compatible with old clients. Therefore the age equals 3 - 2 = 1.

• The interface revision indicates the code revision. In general: the higher, the better, fewer bugs etc.

The three numbers are packed into a single unsigned 32-bit integer with hexadecimal representation 0xIIIAARRR, III is the interface version, AA is the age and RRR the revision number. A version equal zero means that this module is unavailable.

4 Operating the Telescope

- The most important task in operating is of course tracking a desired object. The object specification and setup of desired corrections (e.g. refraction, compensation of mount errors etc.) is done in the OBJECT and POINTING modules (see sections 6 and 7).
- Setting up the telescope and determining the telescope state is the next important task. During telescope operation, errors can arise from several different sources. One major source of errors is of course the telescope hardware itself (motor failures, broken fuses etc.), other errors may arise during normal operation, e.g. one user sets a target and waits for the telescope to reach that position while another user resets the target and user one's target will never be reached. The first class of errors is normally strictly hardware related, the latter class is hardware independent. This is covered by the TELESCOPE module (see section 5).
- Eventually information about telescope axis positions and movements may be needed. This information is provided in the POSITION module (see section 8).
- If the telescope has special components like temperature sensors, covers or paddles for manually controlling the telescope, these will be accessible in the AUXILIARY module (see section 9).

• In addition, implementations of an OpenTSI telescope control should provide TPL2 events to inform the client about important state changes, e.g. telescope on target, slewing etc. OpenTSI therefore defines a list of error / event numbers, see appendix C.

5 The TELESCOPE module

This module contains general telescope settings and the abstract error handling.

Name	Type	Access	Description
READY	INT	RW	Prepare the telescope to become opera-
			tional. Possible values are:
			0: power down telescope,
			1: power up telescope, become opera-
			tional.
			Depending on system configuration, mir-
			ror covers and a dome will be opened dur-
			ing power up and the telescope will slew
			to an initial position. Accordingly dur-
			ing power down, the telescope will slew to
			a park position and mirror covers and a
			dome will be closed.
READY_STATE	FLOAT	RO	Possible values are:
			-3.0: local mode, no remote operation,
			-2.0: emergency off,
			-1.0: errors block operation,
			0.0: shut down,
			0.10.9: power up/down in progress,
			1.0: fully operational.
MOTION_STATE	INT	RO	This is a bit-field, possible values are:
			0: Telescope is not moving at all,
			1: one or more axes are moving,
			2: trajectories are being executed,
			4: movement is blocked (e.g. by limits),
			8: movement is in sync with current tar-
			get, i.e. tracking is accurate,
			16: movement is smoothed by given
			jerk/acceleration/velocity limits.

Name	Type	Access	Description
STOP	INT	WO	Immediate stop all telescope operations
			and axis movement. By writing 1 to this
			variable the telescope hardware will be
			asked to immediate stop all telescope axes.
			There is no guarantee that the axes will
			really be stopped successfully, especially
			if this command is issued while the tele-
			scope system reports errors.
CATALOG[]	STRING	RO	List of all supported catalogs.
INFO	MODULE		General information about the used tele-
			scope, see below.
CONFIG	MODULE		Information about the telescope configu-
			ration.
STATUS	MODULE		Detailed information for the telescope's
			operational state, see below.

5.1 The TELESCOPE.INFO submodule

This module provides some general information about the telescope, mainly for informational purposes. The telescope name (TELESCOPE.INFO.NAME) can be used to distinguish single telescopes in a group of telescopes.

Name	Type	Access	Description
NAME	STRING	RO	Telescope name (e.g. "DEEP_SKY
			NORTH").
DIAMETER	FLOAT	RO	Telescope main mirror diameter in meters.
CABINET	STRING	RO	Manufacturer of the control cabinet.
MANUFACTURER	STRING	RO	Manufacturer of the telescope hardware.

5.2 The TELESCOPE.CONFIG submodule

This module provides some general configuration information about the telescope.

Name	Type	Access	Description
CAPABILITIES	INT	RO	A bit mask of features supported by the
			hardware:
			1: reverse pointing $(ZD < 0)$ is possible.
			2: extended azimuth range (> 360°).
			4: wrap-around azimuth.
			8: extended dome range (> 360°).
			16: wrap-around dome.
			32: dome has azimut rotation (will be
			available as dome axis 0).
			64: dome has open/closeable slit (will be
			available as dome axis 1).
			128: dome has open/closeable flap (will be
			available as dome axis 2).
			256: dome has open/closeable seals (will
			be available as dome axis 3).
			512: dome has first moveable enclosure,
			e.g. simple fold enclosure (will be avail-
			able as dome axis 1).
			1024: dome has second moveable enclo-
			sure, e.g. two-part roll-roof dome (will be
			available as dome axis 2).
MOUNTOPTIONS	STRING	RO	Possible mount types of the telescope as
			comma-separated list. Possible values are:
			"AZ-ZD" = azimuthal telescope mount,
			" $ZD-ZD$ " = zenith distance-zenith dis-
			tance telescope mount,
	andra	DIII	"HA-DEC" = equatorial mount.
MOUNT	STRING	RW	Select the currently used mount type.
	INT		Possible values, see above.
LOAD		WO	Load last saved configuration from config-
			uration file. The 1SI may close the con-
			nection after this command, since it will
			be restarted with the new configuration
CAUE.	INT	WO	Information.
SAVE		wo	Save the currently active configuration to
	MODULE		the configuration files.
FUCUS_MUDEL	MODULE		Information for each article part of the
FORI	MODULE		information for each optical port of the
			telescope.

5.2.1 The TELESCOPE.CONFIG.FOCUS MODEL submodule

A temperature model for the focus can be defined here, which is based on the temperature sensors of the telescope. The formula used to calculate the focus offset can be found in appendix A

Name	Type	Access	Description		
AO	FLOAT	RW	General offset.		
A1[]	FLOAT	RW	Linear coefficients.		
A2[]	FLOAT	RW	Quadratic coefficients.		

5.2.2 The TELESCOPE.CONFIG.PORT[] submodule

Information on optical ports of the telescope is available here. The index is the OpenTCI index for the optical ports. The MODEL[] submodule allows access to the pointing model coefficients of all optical ports and for both normal and reverse orientation. However, for updating models, the POINTING.MODEL module should be used, as it also provides functions for adding measurements and doing calculations. A list of all coefficients can be found in section 7.2.

Name	Type	Access	Description
AVAILABLE	INT	RO	Tells if the selected port is available:
			-1: available, but disabled,
			0: not available,
			1: available.
FOCUS_OFFSET	FLOAT	RW	Relative focus correction for this port
			[mm].
DEROTATOR	INT	RO	Information provided by the telescope
			hardware:
			0: no derotator available,
			1: derotator available,
			2: derotator with extended range (>
			360°).
			4: wrap-around derotator.
FILTER	INT	RO	Information provided by the telescope
			hardware:
			0: no filter available,
			1: number of filter slots.
FILTER_NAME[]	STRING	RW	Symbolic filter names, as configured by
			the user.
FILTER_OFFSET[]	FLOAT	RW	Relative focus correction for this filter
			[mm].
	1	1	·

Name	Type	Access	Description
MODEL[]	MODULE		The mount model for this optical port:
			0: for normal pointing,
			1: for reverse pointing

5.3 The TELESCOPE.STATUS submodule

This module covers error handling and telescope status reporting. Considering the two classes of errors mentioned above, the OpenTSI provides two ways of error notification:

- 1. Errors that occur during telescope operation by user interaction or by wrong user input (as described in the example) can be reported by TPL2 event messages.
- 2. The special module **TELESCOPE**.**STATUS** will provide error status for the telescope hardware which is summarized in different functional hardware groups (see below). TPL2 events can be utilized to notify the client that errors have occurred.

To provide an hardware independent abstract error model, the individual hardware errors of the telescope are summarized in several logical function groups. So far the following groups are defined:

Group	Components
DRIVES	All axes of the telescope, e.g. AZ, ZD.
SYSTEM	All global errors, e.g. power failure, reference errors etc.
AUXILIARY	Other, e.g. sensors.

The status module contains:

Name	Type	Access	Description
GLOBAL	INT	RO	Global state of the telescope. Possible val-
			ues are:
			-2: no license data found,
			-1: no telescope hardware found (no con-
			nection to an OpenTCI compliant tele-
			scope),
			0: operational,
			≥ 0 : error bitmask:
			1: PANIC, a severe condition, completely
			disabling the entire telescope,
			2: ERROR, a serious condition, disabling
			important parts of the telescope system,
			4: WARNING, a critical condition, which
			is not (yet) disabling the telescope,
			8: INFO, a informal situation, which is
	ampina	20	not affecting the operation.
LIST	STRING	RO	A comma separated list of function groups
			that currently have problems. Each entry
			has the following format:
			< Group> < Level>:< Component> < Level>;
			< Error > < Detail > < Level > < Component >;
			<i><group></group></i> is one of the listed groups above,
			$\langle Level \rangle$ has the same value as GLUBAL
			above and <i>Component></i> is for example
			in []) The entional Error / Dataib
			information is probably bardware specific
			and should only be used for logging. At
			most one entry per group is generated
			The <i>clevel</i> fields are an inclusive or
			of all underlying errors. If the delimiter
			should occur within the names or mes-
			sages they will be either escaped with
			a backslash or the entire entry is put in
			double quotes
			aounic quotes.

Name	Type	Access	Description
CLEAR	INT	WO	When set to same value as returned by
			GLOBAL, try to clear the telescope errors
			(otherwise, an error is generated). If the
			errors reported by the underlying soft-
			and/or hardware are not resolved, this will
			not be able to clear the errors. Only re-
			solved errors will be removed from the er-
			ror list. In some cases, the hardware might
			do another try when clearing the errors
			(e.g. retrying to initialize the motor etc.).
			Therefore, it is not advisable to continu-
			ously clear errors and might even lead to
			hardware damage.
ERROR_LIST	STRING	RO	[Deprecated] While this function should
			not be used anymore, it will return the
			telescope errors as reported by the tele-
			scope, e.g. no grouping etc. is done, as it
			is with the LIST variable.

6 The OBJECT module

This is the module of the OpenTSI which provides functionality for object specification in various coordinate systems. Currently supported object coordinate system/types are:

Coordinates	Description
INSTRUMENTAL	Instrumental coordinates, typically AZ and ZD.
HORIZONTAL	True horizontal coordinates, AZ and ALT or ZD.
EQUATORIAL	Equatorial coordinates, RA, DEC with proper motions and
	in definable epoch/equinox.
ELEMENTS	Orbital elements (parabolic, near-parabolic and elliptic).
SOLARSYSTEM	Planets and Moons within the solar system.
CATALOG	Objects defined in a supported catalog.

The specification of objects in these coordinate systems will be discussed below. Most coordinates can be given either as single position (e.g. RA, DEC) or as timeposition trajectory which allow accurate and time synced arbitrary telescope movements.

In addition to submodules for all of these coordinate systems, the $\tt OBJECT$ module

contains another variable:

Name	Type	Access	Description
TYPE	STRING	RW	Selected object type, will also be automat-
			ically updated, if coordinates are written
			to one of the submodules.

6.1 The TRAJECTORY submodules

The TRAJECTORY submodule is available in INSTRUMENTAL, HORIZONTAL and EQUATORIAL coordinate systems. Instead of specifying the object only with one positions, an unlimited number of time-position points can be added to a trajectory. For convenience a block of these points can be written into a transfer buffer and be added into the internal trajectory with ADDPOINTS at any time. The provided time should be in the future (or the points will be ignored otherwise). It is also possible to overwrite part of the trajectory by sending points that are within the trajectory's runtime. The buffer structure will be described with the individual coordinate types.

Name	Type	Access	Description
ADDPOINTS	INT	RW	On write: will add the number of buffer
			points (starting from BUFFER[0]) into the
			internal trajectory handling.
			On read: returns the number of written
			points that have been written on the last
			write access.
CLEAR	FLOAT	WO	Clear all trajectory points with times that
			are later or equal the written value.
STARTTIME	FLOAT	RO	Time of the first trajectory point (NULL
			if no trajectory defined).
ENDTIME	FLOAT	RO	Time of the last trajectory point (NULL
			if no trajectory defined).
RUNTIME	FLOAT	RO	Remaining runtime of the trajectory
			(NULL if no trajectory defined).
BUFFER[]	MODULE		Module array which is used as buffer for
			new sample points (see below).

6.2 The OBJECT.INSTRUMENTAL submodule

Setting coordinates or adding trajectory points will change OBJECT. TYPE to INSTRUMENTAL.

Name	Type	Access	Description
AZ	FLOAT	RW	Azimuth. [°]
ZD	FLOAT	RW	Zenith distance. Will overwrite ALT. [°]
ALT	FLOAT	RW	Altitude/Elevation. Will overwrite ZD. [°]
NAME	STRING	RW	Optional name (for information only).
TRAJECTORY	MODULE		Trajectory module.

Structure of Trajectory buffer is:

Name	Type	Access	Description
UT1	FLOAT	RW	UT1. [unix time, seconds since 01.01.1970
			00:00:00]
AZ	FLOAT	RW	Azimuth. [°]
ZD	FLOAT	RW	Zenith distance. [°]
DEROTATOR	FLOAT	RW	Derotator (depending on
			POSITION.SETUP.DEROTATOR.SYNCMODE
			considered absolute or as offset). $[^{\circ}]$

6.3 The OBJECT.HORIZONTAL submodule

Setting coordinates or adding trajectory points will change OBJECT. TYPE to HORIZONTAL.

Name	Type	Access	Description
AZ	FLOAT	RW	Azimuth. [°]
ALT	FLOAT	RW	Altitude/Elevation. Will overwrite ZD. [°]
ZD	FLOAT	RW	Zenith distance. Will overwrite ALT. [°]
NAME	STRING	RW	Optional name (for information only).
TRAJECTORY	MODULE		Trajectory module.

Structure of Trajectory buffer is:

Name	Type	Access	Description
UT1	FLOAT	RW	UT1. [unix time, seconds since 01.01.1970
			00:00:00]
AZ	FLOAT	RW	Azimuth. [°]
ALT	FLOAT	RW	Altitude. [°]
DEROTATOR	FLOAT	RW	Derotator (depending on
			POSITION.SETUP.DEROTATOR.SYNCMODE
			considered absolute or as offset). $[^{\circ}]$

6.4 The OBJECT.EQUATORIAL submodule

Setting coordinates or adding trajectory points will change OBJECT. TYPE to EQUATORIAL.

Name	Type	Access	Description
EPOCH	FLOAT	RW	Epoch of the coordinates. [julian year]
EQUINOX	FLOAT	RW	Equinox of the coordinates. [julian year]
RA	FLOAT	RW	Right ascension. [h]
DEC	FLOAT	RW	Declination. [°]
RA_PM	FLOAT	RW	Proper motion in right ascension. [h/year]
DEC_PM	FLOAT	RW	Proper motion in declination. [°/year]
RA_RATE	FLOAT	RW	Additional rate in right ascension (for non-
DEC_RATE	FLOAT	RW	stellar objects). This rate is applied to RA when the tracking is started. Therefore, RA has to be the position of the object at start of tracking. $[h/sec]$ Additional rate in declination (for non- stellar objects). This rate is applied to DEC when the tracking is started. Therefore, DEC has to be the position of the object at start of tracking. $[^{\circ}/sec]$
NAME	STRING	RW	Optional name (for information only).
TRAJECTORY	MODULE		Trajectory module.

Structure of Trajectory buffer is:

Name	Type	Access	Description
UT1	FLOAT	RW	UT1. [unix time, seconds since 01.01.1970]
			00:00:00]
RA	FLOAT	RW	Right ascension. [h]
DEC	FLOAT	RW	Declination. [°]
DEROTATOR	FLOAT	RW	Derotator (depending on
			POSITION.SETUP.DEROTATOR.SYNCMODE
			considered absolute or as offset). $[^{\circ}]$

The epoch/equinox (EPOCH/EQUINOX), proper motion (RA_PM/DEC_PM) and rate (RA_RATE/DEC_RATE) settings will be considered, but cannot be specified for each trajectory point.

6.5 The OBJECT.ELEMENTS submodule

Setting orbital elements parameters will change OBJECT.TYPE to ELEMENTS.

Name	Type	Access	Description
TYPE	FLOAT	RW	Type of orbital elements:
			0: elliptic,
			1: parabolic,
			2: near-parabolic.
EQUINOX	FLOAT	RW	Equinox of the coefficients. [julian year]
Т	FLOAT	RW	All types: Time of passage through peri-
			helion. [julian year]
I	FLOAT	RW	All types: Inclination. [°]
OMEGA_PERIHELION	FLOAT	RW	All types: Argument of perihelion. [°]
OMEGA_NODE	FLOAT	RW	All types: Longitude of ascending node.
			[°]
А	FLOAT	RW	Elliptic: semimajor axis. [AU]
E	FLOAT	RW	Elliptic/near-parabolic: Eccentricity.
Q	FLOAT	RW	Parabolic/near-parabolic: Perihelion dis-
			tance. [AU]
NAME	STRING	RW	Optional name (for information only).
DISTANCE	FLOAT	RO	Object distance (for information only).
			[AU]

6.6 The OBJECT.SOLARSYSTEM submodule

Selecting solar system objects will change OBJECT.TYPE to SOLARSYSTEM.

Name	Type	Access	Description
OBJECT	INT	RW	Number of object. Possible Values:
			0: Sun, 1: Mercury, 2: Venus, 3: Earth, 4:
			Mars, 5: Jupiter, 6: Saturn, 7: Neptune,
			8: Uranus, 9: Pluto.

Name	Type	Access	Description
MOON	INT	RW	Moon of the object (only Earth, Jupiter
			and Saturn):
			0: Object itself
			Earth: 1: Moon
			Jupiter: 1: Io, 2: Europa, 3: Ganymed, 4:
			Callisto
			Saturn: 1: Mimas, 2: Enceladus, 3:
			Tethys, 4: Dione, 5: Rhea, 6: Titan, 7:
			Hyperion, 8: Iapetus
NAME	STRING	RO	Name of that object (for information
			only).
DISTANCE	FLOAT	RO	Object distance (for information only).
			[AU]

Tracking or pointing to the sun may be disabled for security reasons.

6.7 The OBJECT.CATALOG submodule

Selecting a catalog object will change OBJECT.TYPE depending on the catalog entry to most likely EQUATORIAL or ELEMENTS.

Name	Type	Access	Description
NAME	STRING	RW	Name of catalog (see above).
OBJECT	STRING	RW	Name of object (e.g. "M51").

7 The POINTING module

This module allows acquisition of an astronomical object (which has been selected using the OBJECT module) and also provides options to configure the way the telescope will acquire the object. The following variables are available:

Name	Type	Access	Description
TRACK	INT	RW	Start or stop tracking on a target. Possi-
			ble values are:
			0: stop tracking.
			1: (re)start tracking (this is also needed,
			if a new object has been selected).
			2: goto object coordinates. The telescope
			will move to the current object coordi-
			nates and stay there. This will end a
			running a tracking.
			3: update filter wheel position only. This
			will not affect a running tracking.
			4: update focus position only. This will
			not affect a running tracking.
			5: update derotator position
			only. This is only possible, if
			PUINTING.SETUP.DERUTATUR.SYNCMUDE
			was 0 at begin of tracking or no tracking
			6: updata doma position
			only This is only possible if
			DOINTING SETIED DOME SYNCMODE Was 0
			at begin of tracking or no tracking is
			active
ORTENTATION	INT	BO	The used tracking orientation:
010121011101		100	0: normal pointing $(ZD > 0)$
			1: reverse pointing $(ZD < 0)$
			If reverse tracking is available depends
			on the hardware (see above). Also, the
			POINTING.SETUP module allows to activate
			or deactivate this feature.
DEROTATOR_OFFSET	FLOAT	RO	The offset for the derotator (in relative
			mode) or the derotator position (in abso-
			lute mode). This will include both user
			settings and automatic settings (if this op-
			timization is selected (see below)). $[^{\circ}]$
FOCUS_OFFSET	FLOAT	RO	The automatically selected offset for the
			focus. [mm]
SLEWTIME	FLOAT	RO	Time needed to reach the target once
			tracking is started. [s]

Name	Type	Access	Description
TRACKTIME	FLOAT	RO	Time available for tracking the target be-
			fore mount limits will be reached. [s]
TRACKLIMITS	STRING	RO	Comma separated list of limits that will
			be reached eventually:
			AXIS_PosMin: Axis will hit minimum
			position limit,
			AXIS_PosMax: Axis will hit maximum
			position limit,
			AXIS_SpeedMax: Axis will go over maxi-
			mum speed limit,
			TRAJECTORY_EndOfData: User-defined
			trajectory data will end.
			OBJECT_BelowHorizon: Object will go
			below horizon.
			OBJECT_Invisible : Object is invisible at
			current geographic location.
			For AXIS, the same names as in
			POSITION.INSTRUMENTAL will be used.
TARGETDISTANCE	FLOAT	RO	The RMS distance of all axes from the tar-
			get. [°]
SETUP	MODULE		Configuration of the tracking/slewing
			mode.
MODEL	MODULE		Configuration of the mount model (correc-
			tion for mechanical errors and errors due
			to the optical alignment).

7.1 The POINTING.SETUP submodule

In the SETUP module, you can configure how the target should be acquired. Most of the settings will however be ignored if OBJECT.TYPE is INSTRUMENTAL.

Name	Type	Access	Description
REFRACTION	INT	RW	Consider atmospheric refraction. Possible
			values are:
			0: no refraction correction,
			1: use refraction correction. The temper-
			ature and pressure will be taken from the
			ENVIRONMENT module.

Name	Type	Access	Description
ORIENTATION	INT	RW	Desired orientation for tracking:
			0: normal pointing $(ZD > 0)$
			1: reverse pointing $(ZD < 0)$
			2: allow automatic selection
OPTIMIZATION	INT	RW	Optimization mode for slewing to/track-
			ing of objects:
			0: no optimization. An extended az-
			imuth/derotator range will not be used.
			1: maximize track time. Extended ranges
			of azimuth/derotator and, if selected, au-
			tomatic orientation selection will be used
			to allow the maximum possible track time
			of the selected object.
			2: minimize slew time. As above, all fea-
			tures will be used, to allow fastest acqui-
			sition of the target from the current tele-
			scope position.
			The optimization will also consider MIN
	FLOAT	DW	The minimal required treak time. This
MIN_IRACKIIME	FLOAI	πw	will be considered if ODTIMIZATION is used
			If the colored target connet he tracked for
			the given time, the call to DOINTING TRACK
			will fail [c]
IIGE DODT	INT	\mathbf{BW}	Optical port specifies used derotator and
USE_FUNI		1000	filter and will also rotate M3 (if supported
			by the telescope hardware)
LOCAL	MODULE		Location and time settings (see below)
ENVIRONMENT	MODULE		Environmental conditions setup (see be-
			low).
FOCUS	MODULE		Focus specific options (see below).
DEROTATOR	MODULE		Derotator specific options (see below).
FILTER	MODULE		Filter wheel specific options (see below).
DOME	MODULE		Dome specific options (see below).

7.1.1 The POINTING.SETUP.LOCAL submodule

Location and time settings can be set here.

Name	Type	Access	Description
SYNCMODE	INT	RW	Sync telescope location with information
			provided by the telescope hardware:
			0: don't sync, use custom values (see be-
			low),
			1: sync, use the values from the telescope
			Writing to any of the variables below will
			set this variable to 0.
LATITUDE	FLOAT	RW	Telescope's latitude. Positive for northern
			hemisphere. [°]
LONGITUDE	FLOAT	RW	Telescope's longitude. Positive east of
			Greenwich. [°]
HEIGHT	FLOAT	RW	Telescope's height. [m]
UT1-UTC	FLOAT	RW	Difference between UT1 and UTC. [s]
TAI-UTC	FLOAT	RW	Difference between TAI and UTC. [s]

7.1.2 The POINTING.SETUP.ENVIRONMENT submodule

Weather status information or custom values.

Name	Type	Access	Description
SYNCMODE	INT	RW	Synchronize with environment monitor:
			0: don't sync, use custom values,
			1: sync.
TEMPERATURE	FLOAT	RW	Temperature. [°C]
PRESSURE	FLOAT	RW	Air pressure. [mBar]

7.1.3 The POINTING.SETUP.FOCUS submodule

Allows the user to setup the focus settings.

Name	Type	Access	Description
SYNCMODE	INT	RW	Sync focus movement to various condi-
			tions. This is a bitmap, the following bits
			are defined:
			0: don't sync,
			1: sync with focus position.
			2: sync with thermal model,
			4: sync with port offsets,
			8: sync with filter offsets,
			16: turn off focus motor during tracking.

	Name	Type	Access	Description
-	POSITION	FLOAT	RW	Focus position. [mm]

7.1.4 The POINTING.SETUP.DEROTATOR submodule

Allows the user to setup the derotator (if available on the used port).

Name	Type	Access	Description
SYNCMODE	INT	RW	Sync derotator movement. Possible val-
			ues:
			0: don't sync,
			1: absolute position, given as OFFSET (or
			DEROTATOR for trajectories),
			2: true orientation,
			3: as 2, but use OFFSET (or DEROTATOR for
			trajectories) as an additional offset,
			4: true orientation plus a 0, 90, 180 or 270
			degree offset (to allow longer tracktimes or
			short slewtimes),
			5: as 4, but use OFFSET (or DEROTATOR for
			trajectories) as an additional offset,
			6: true orientation plus arbitrary offset
			(for even better optimization).
OFFSET	FLOAT	RW	Derotator position (SYNCMODE 1) or posi-
			tion offset (SYNCMODE 3 and 5). $[^{\circ}]$

7.1.5 The POINTING.SETUP.FILTER submodule

Allows the user to select the used filter (if available on the used port).

Name	Type	Access	Description
INDEX	INT	RW	Allow selection of filter by index.
NAME	STRING	RW	Allow selection of filter by name.

7.1.6 The POINTING.SETUP.DOME submodule

Dome related setup.

Name	Type	Access	Description
SYNCMODE	INT	RW	Synchronize dome movements with tele-
			scope. Possible values:
			0: don't sync,
			1: fixed position, given as OFFSET,
			2: sync discrete (allow a position devia-
			tion from the azimuth axis according to
			MAX_DEVIATION),
			3: as 2, but use OFFSET as an additional
			offset,
			4: sync continuous (may not be suited for
			all domes),
			5: as 4, but use OFFSET as an additional
			offset.
MAX_DEVIATION	FLOAT	RW	For discrete movement (SYNCMODE 2 and
			3), the maximum position deviation that
			the dome can have from the telescope az-
			imuth. If set to NULL, an automatically cal-
			culated value is used, which takes dome/-
			mount parameters (diameter, slit width,
) into account.
OFFSET	FLOAT	RW	Dome position (SYNCMODE 1) or position
			offset (SYNCMODE 3 and 5). $[^{\circ}]$

7.2 The POINTING.MODEL submodule

This module holds pointing model coefficients for the currently used optical port and also provides functionality to build a new model from taken measurements. There are several model types available, which will be discussed later on.

The coefficients of the models can be calculated internally or by using additional programs (e.g. TPoint). The formulas of the models can be found in appendix B. The following variables are available:

Name	Type	Access	Description
TYPE	INT	RW	Select pointing model type:
			0: none,
			1: classic,
			2: extended.

Name	Type	Access	Description
ADD	STRING	WO	Write here to take a measurement, which
			is named "value". If an empty string is
			specified and the currently pointed object
			has a name, it will be used instead.
CALCULATE	FLOAT	RW	Calculate a model and fill all parameters
			with the new model on write. Possible
			values are:
			1: calculate,
			2: calculate and reset any axis OFFSET to
			0.
			Returns fit quality (mean error) on read,
			if calculation was successful. [°]
CALCULATE_DETAIL	STRING	RO	After a successful calculation, returns a
			list of errors for each individual measure-
			ment in the format:
			number,az_error,zd_error,derotator_er-
			$ror,dome_error,total_error;;$
			-1;total_az_error,total_zd_er-
			ror,total_derotator_error,total_dome
			error [°]
LIST	STRING	RO	List of all measurements in the format:
			number,name,az,offset_az,
			zd,offset_zd,
			derotator,offset_derotator,
	INTE	DO	dome,offset_dome;number,
COUNT		RO	Number of measurements taken so far.
CLEAR		WO	Will remove all measurements from list.
REMOVE		WO	Remove n -th measurement from list. For
			n < 0, use one of the last measurements
	CTDING	DW	$(-1: \text{ last}, -2: \text{ second to last}, \dots).$
FILE	SIRING		Fliename of the measurement flie.
LUAD		WU	Load measurements from file:
			1: load and overwrite current list
CAVE	INT	WO	2. load and append to current list.
SAVE	IIN I		1. save and overwrite file
			2: save and append to file
			2. save and append to me.

Name	Type	Access	Description
AUTO_SAVE	INT	RW	Automatically save measurements to file:
			0: disabled,
			1: enabled.
CLASSIC	MODULE		Coefficients for the classic model.
EXTENDED	MODULE		Coefficients for the extended model.

7.2.1 The POINTING.MODEL.CLASSIC submodule

This is the classic model which is known from the literature. It consists of offsets for all telescope axes (AOFF/ZOFF/DOFF) and additionally of geometric corrections, which take into account, that the telescope might not be well leveled (AN/AE), the zenith distance axis is not perpendicular to the azimuth axis (NPAE), that the optical axis is not perpendicular to the zenith distance axis (BNP) and that the tube might be bent, depending on the zenith distance (TF).

Name	Type	Access	Description
AOFF	FLOAT	RW	Azimuth offset. [°]
ZOFF	FLOAT	RW	Zenith distance offset. [°]
DOFF	FLOAT	RW	Derotator offset. [°]
AN	FLOAT	RW	Tilt of azimuth axis toward north. $[^{\circ}]$
AE	FLOAT	RW	Tilt of azimuth axis toward east. $[^{\circ}]$
NPAE	FLOAT	RW	Error in perpendicularity of azimuth and
			zenith distance axis. [°]
BNP	FLOAT	RW	Error in perpendicularity of optical and
			zenith distance axis. [°]
TF	FLOAT	RW	Sagging of tube. [°]

7.2.2 The POINTING.MODEL.EXTENDED submodule

In comparison to the classic model, this pointing model has been extended by four coefficients which take into account that the encoders are not mounted precisely in the center of the axis rotation (AES/AEC for azimuth, ZES/ZEC for zenith distance) as well as by some phenomenological coefficients for higher order effects (AS2A, AC2A, AS3A, AC3A, ZS2A, ZC2A, ZS3A,ZC3A, ZS4A, ZC4A, C5). Additionally, the coefficients for azimuth tilt correction are now separate for azimuth and altitude (AAN, ZAN, AAE, ZAE).

Name	Type	Access	Description
AOFF	FLOAT	RW	Azimuth offset. [°]
ZOFF	FLOAT	RW	Zenith distance offset. [°]

Name	Type	Access	Description
DOFF	FLOAT	RW	Derotator offset. [°]
COFF	FLOAT	RW	Astrodome offset. [°]
AAN	FLOAT	RW	Tilt of azimuth axis toward north (correc-
			tion for azimuth axis). [°]
ZAN	FLOAT	RW	Tilt of azimuth axis toward north (correc-
			tion for zenith distance axis). $[^{\circ}]$
AAE	FLOAT	RW	Tilt of azimuth axis toward east (correc-
			tion for azimuth axis). [°]
ZAE	FLOAT	RW	Tilt of azimuth axis toward east (correc-
			tion for zenith distance axis). [°]
NPAE	FLOAT	RW	Error in perpendicularity of azimuth and
			zenith distance axis. [°]
BNP	FLOAT	RW	Error in perpendicularity of optical and
			zenith distance axis. [°]
AES	FLOAT	RW	Eccentricity of azimuth encoder, sine part.
			[°]
AEC	FLOAT	RW	Eccentricity of azimuth encoder, cosine
			part. [°]
ZES	FLOAT	RW	Eccentricity of zenith distance encoder.
			sine part. [°]
ZEC	FLOAT	RW	Eccentricity of zenith distance encoder.
			cosine part (this coefficient also includes
			the sagging of the tube). [°]
AS2A	FLOAT	RW	Phenomenological correction of azimuth
	1 20111		due to double azimuth argument, sine
			part. [°]
AC2A	FLOAT	RW	Phenomenological correction of azimuth
			due to double azimuth argument, cosine
			part. [°]
AS3A	FLOAT	RW	Phenomenological correction of azimuth
	1 20111		due to triple azimuth argument sine part
			[0]
AC3A	FLOAT	BW	Phenomenological correction of azimuth
	1 20111		due to triple azimuth argument cosine
			part [°]
7.S2A	FLOAT	BW	Phenomenological correction of zenith dis-
			tance due to double azimuth argument
			sine part. [°]
			SIIIO POILO, []

Name	Type	Access	Description
ZC2A	FLOAT	RW	Phenomenological correction of zenith dis-
			tance due to double azimuth argument,
			cosine part. [°]
ZS3A	FLOAT	RW	Phenomenological correction of zenith dis-
			tance due to triple azimuth argument, sine
			part. [°]
ZC3A	FLOAT	RW	Phenomenological correction of zenith dis-
			tance due to triple azimuth argument, co-
			sine part. $[^{\circ}]$
ZS4A	FLOAT	RW	Phenomenological correction of zenith dis-
			tance due to quadruple azimuth argu-
			ment, sine part. $[^{\circ}]$
ZC4A	FLOAT	RW	Phenomenological correction of zenith dis-
			tance due to quadruple azimuth argu-
			ment, cosine part. [°]
C5	FLOAT	RW	Phenomenological correction of zenith dis-
			tance due to inverse sine of zenith dis-
			tance. $[^{\circ}]$

8 The POSITION module

This module allows access to real-time positions and state of all axes and other telescope components.

Name	Type	Access	Description
LOCAL	MODULE		Time and position information.
INSTRUMENTAL	MODULE		Instrumental coordinates.
HORIZONTAL	MODULE		Horizontal coordinates.
EQUATORIAL	MODULE		Equatorial coordinates.

8.1 The POSITION.LOCAL submodule

This is the position and time information as provided by the telescope hardware.

Name	Type	Access	Description
SIDEREAL_TIME	FLOAT	RO	Current local sidereal time. [h]
UTC	FLOAT	RO	Current telescope time in UTC. [seconds
			since 01.01.1970 00:00:00]

Name	Type	Access	Description
UT1	FLOAT	RO	Current telescope time in UT1. [seconds
			since 01.01.1970 00:00:00]
TAI	FLOAT	RO	Current telescope time in TAI. [seconds
			since 01.01.1970 00:00:00]
UT1-UTC	FLOAT	RO	Difference between UT1 and UTC. [s]
TAI-UTC	FLOAT	RO	Difference between TAI and UTC. [s]
LATITUDE	FLOAT	RO	Telescope's latitude. Positive for northern
			hemisphere. [°]
LONGITUDE	FLOAT	RO	Telescope's longitude. Positive east of
			Greenwich. [°]
HEIGHT	FLOAT	RO	Telescope's height. [m]

8.2 The POSITION.INSTRUMENTAL submodule

The following telescope axes will be available. Non native axes (which are not provided by the telescope) may be simulated by the software which is however not mandatory:

Axis	Description
AZ	Azimuth.
ZD	Zenith distance.
ALT	Elevation/Altitude.
RA	Right ascension.
DEC	Declination.
FOCUS	Focus.
DEROTATOR []	Derotators.
FILTER[]	Filter wheels.
DOME []	Astrodome axes.

For all these axes, the following information is provided:

Name	Type	Access	Description	
POWER_STATE	FLOAT	RO	Power state of the component.	Possible
			values are:	
			-1.0: emergency off,	
			0.0: off,	
			0.5: almost on,	
			1.0: on.	

Name	Type	Access	Description
REFERENCED	FLOAT	RO	Referenced state of this component. Pos-
			sible values are:
			0.0: not referenced,
			1.0: referenced,
			$0.0 \dots 1.0$ values will indicate the progress
			during referencing.
ERROR_STATE	INT	RO	If this variable is $\neq 0$, then the axis has
			currently some error.
LIMIT_STATE	INT	RO	If this variable is $\neq 0$, then the axis is
			currently at some limit.
MOTION_STATE	INT	RO	If this variable is $\neq 0$, then the axis is
			currently moving (see TELESCOPE.MOTION
			STATE).
REALPOS	FLOAT	RO	True current position in component spe-
			cific units. See [1] for an explanation of
			coordinate systems.
CURRPOS	FLOAT	RO	The current position in degrees, possibly
			corrected by the given OFFSET (in the same
			unit as REALPOS).
CURRSPEED	FLOAT	RO	The current speed of the axis in units/s.
TARGETPOS	FLOAT	RW	The position the axis is currently moving
			to (in the same unit as REALPOS), possibly
			corrected by the current OFFSET.
OFFSET	FLOAT	RW	Additional offset (in the same unit as
			REALPOS) that will be added to all posi-
			tioning requests also during tracking. This
			offset will be used for pointing model mea-
			surements.
TARGETDISTANCE	FLOAT	RO	The distance between CURRPOS and
			TARGETPOS.

DEROTATOR and **FILTER** are arrays. The index is used to select the derotator / filter wheel of a specific optical port. For an enumeration of the optical ports, please refer to [?].

DOME is also an array, as some domes offer more than one axis (azimuth rotation and slit open/close etc.). TELESCOPE.CONFIG.CAPABILITIES can be used to find out which axes the dome offers and at what indices they reside. Further details can be found in [?].

8.3 The POSITION.HORIZONTAL submodule

Provides the telescope position in true horizontal coordinates (not corrected for mount errors or refraction).

Name	Type	Access	Description
AZ	FLOAT	RO	Azimuth in true horizontal coordinates.
			[°]
ALT	FLOAT	RO	Elevation/Altitude in true horizontal co-
			ordinates. [°]
ZD	FLOAT	RO	Zenith distance in true horizontal coordi-
			nates. [°]
DEROTATOR	FLOAT	RO	Derotator position. [°]
DOME	FLOAT	RO	Dome position. [°]

8.4 The POSITION.EQUATORIAL submodule

Provides the telescope position in equatorial coordinates.

Name	Type	Access	Description
RA_J2000	FLOAT	RO	Current right ascension of telescope in
			J2000.0 reference system. [h]
DEC_J2000	FLOAT	RO	Current declination of telescope in J2000.0
			reference system. [°]
RA_CURRENT	FLOAT	RO	Current right ascension of telescope in cur-
			rent equinox. [h]
DEC_CURRENT	FLOAT	RO	Current declination of telescope in current
			equinox. [h]
PARALLACTIC_ANGLE	FLOAT	RO	Current parallactic angle. [°]
POSITION_ANGLE	FLOAT	RO	Current position angle. [°]

9 The AUXILIARY module

This module holds information of the auxiliary telescope systems (e.g. COVERS, PADDLE, SENSORS).

9.1 The AUXILIARY.COVER submodule

This module (or, optionally, module array) provides functions to move covers, e.g. mirror covers.

Name	Type	Access	Description
REALPOS	FLOAT	RO	Position of the cover:
			0: closed,
			1: open.
TARGETPOS	FLOAT	RW	Target position of the cover as above.

9.2 The AUXILIARY.DOME submodule

This module provides functions to open/close the dome (rotating it is done with POSITION.INSTRUMENTAL.DOME or POINTING.SETUP.DOME). Currently, only completely opening or closing is supported. In case of a dome with slit and flap or two-part roll-roofs, finer control may be desired. Please use POSITION.INSTRUMENTAL.DOME[x].

Name	Type	Access	Description
REALPOS	FLOAT	RO	Position of the dome enclosure(s):
			0: closed,
			1: open.
TARGETPOS	FLOAT	RW	Target position of the dome enclosure(s)
			as above.

9.3 The AUXILARY.PADDLE submodule

Name	Type	Access	Description
ACTIVE	INT	RW	Manual control activation state. Possible
			values:
			0: disabled,
			1: enabled.
BRIGHTNESS	FLOAT	RW	Brightness of buttons. Possible values
			range from:
			0.01.0 (lowest brightest setting).
SPEED	FLOAT	RO	Speed setting on the manual control de-
			vice.
MODE	INT	RO	Mode of the manual control (e.g. key
			switch on the paddle). Possible values are:
			0: disabled,
			1: enabled.
			Note that the actual state of the manual
			control is an "AND" conjunction of MODE
			and ACTIVE.

Name	Type	Access	Description
SELECTION	INT	RO	A number representing a selection (e.g.
SELECTION_TEXT	STRING	RO	selected device) that was made with the manual control. A textual description of the selected de-
			vice/speed.

9.4 The AUXILIARY.SENSOR[] submodule

This module array provides functions to read out sensors of the telescope.

Name	Type	Access	Description
DESCRIPTION	STRING	RO	A textual description of the sensor posi-
			tion.
UNIT	STRING	RO	The unit of the sensor device like Pa, °C
			etc.
VALUE	FLOAT	RO	Sensor value in the specified unit.

9.5 The AUXILIARY.SWITCH[] submodule

This module array provides functions to read and write to switches of the telescope.

Name	Type	Access	Description
DESCRIPTION	STRING	RO	A textual description of the switch posi-
			tion.
UNIT	STRING	RO	The unit of the switch device like Pa, °C
			etc.
VALUE	FLOAT	RW	Switch value in the specified unit.

A Formula for the simple thermal focus correction

The TSI includes a simple thermal focus correction which is based on the temperature sensors of the telescope. All N temperature sensors will be assigned a consecutive index number, starting at 0. The order of the sensors is based on the TCI ordering of temperature sensors (see [1]).

Then the temperature dependent focus offset will be calculated using the following formula:

$$\Delta_{\text{Foc}} = \sum_{i=0}^{N-1} \left(a_{2_i} T_i^2 + a_{1_i} T_i \right) + a_0$$

B Formulas of the different Pointing Models

The formulas in the following sections refer to the true instrumental axes of the telescope hardware. Depending on the quantity of measurements, the calculation of the model may only determine some of the coefficients.

B.1 Azimuthal mounted telescopes

B.1.1 The Classic Model

The classic model takes several geometric errors of the telescopes into account. An error in the leveling of the telescope toward north (AN) and toward east (AE), a non-perpendicularity of the azimuth and zenith distance axis (NPAE), a non-perpendicularity of the optical and the zenith distance axis (BNP) and a sagging of the tube (TF).

$$\begin{aligned} \Delta_{\text{Az}} &= -c_{\text{AN}} \cdot \sin A \cdot \cot Z \\ &+ c_{\text{AE}} \cdot \cos A \cdot \cot Z \\ &+ c_{\text{NPAE}} \cdot \cot Z \\ &- c_{\text{BNP}} \cdot \frac{1}{\sin Z} \\ &+ c_{\text{AOFF}} \end{aligned}$$
$$\begin{aligned} \Delta_{\text{ZD}} &= c_{\text{AN}} \cdot \cos A \\ &+ c_{\text{AE}} \cdot \sin A \\ &+ c_{\text{TF}} \cdot \sin Z \\ &+ c_{\text{ZOFF}} \end{aligned}$$
$$\begin{aligned} \Delta_{\text{Der}} &= c_{\text{DOFF}} \end{aligned}$$

B.1.2 The Extended Model

The extended model includes, in addition to the classic model, four coefficients that take the eccentricity of the encoders into account (AES, AEC, ZES, ZEC). The constants TF of the classic model is included in EEC, so there are only three new coefficients. Furthermore it adds several phenomenological coefficients (AS2A, AC2A, AS3A, AC3A, ZS2A, ZC2A, ZS3A, ZC3A, ZS4A, ZC4A, C5) for higher order effects of unknown origin. Additionally, the coefficients for azimuth tilt correction

are now separate for azimuth and altitude (AAN, AAE, ZAN, ZAE).

$$\begin{split} \Delta_{\mathrm{Az}} &= c_{\mathrm{AAN}} \cdot \sin A \cdot \cot Z \\ &- c_{\mathrm{AAE}} \cdot \cos A \cdot \cot Z \\ &+ c_{\mathrm{NPAE}} \cdot \cot Z \\ &- c_{\mathrm{BNP}} \cdot \frac{1}{\sin Z} \\ &+ c_{\mathrm{AES}} \cdot \sin A \\ &+ c_{\mathrm{AEC}} \cdot \cos A \\ &+ c_{\mathrm{AS2A}} \cdot \sin(2A) \cdot \cot Z \\ &+ c_{\mathrm{AC2A}} \cdot \cos(2A) \cdot \cot Z \\ &+ c_{\mathrm{AC3A}} \cdot \cos(2A) \cdot \cot Z \\ &+ c_{\mathrm{AC3A}} \cdot \cos(3A) \cdot \cot Z \\ &+ c_{\mathrm{AOFF}} \\ \Delta_{\mathrm{ZD}} &= c_{\mathrm{ZAN}} \cdot \cos A \\ &+ c_{\mathrm{ZES}} \cdot \sin A \\ &+ c_{\mathrm{ZES}} \cdot \sin Z \\ &+ c_{\mathrm{ZS2A}} \cdot \sin(2A) \\ &+ c_{\mathrm{ZS2A}} \cdot \sin(2A) \\ &+ c_{\mathrm{ZS3A}} \cdot \sin(3A) \\ &+ c_{\mathrm{ZC3A}} \cdot \cos(3A) \\ &+ c_{\mathrm{ZS3A}} \cdot \sin(3A) \\ &+ c_{\mathrm{ZC3A}} \cdot \cos(3A) \\ &+ c_{\mathrm{ZC4A}} \cdot \cos(3A) \\ &+ c_{\mathrm{ZC4A}} \cdot \cos(4A) \\ &+ c_{\mathrm{C5}} \cdot \frac{1}{\sin Z} \\ &+ c_{\mathrm{ZOFF}} \\ \Delta_{\mathrm{Dore}} &= c_{\mathrm{DOFF}} \\ \Delta_{\mathrm{Dore}} &= c_{\mathrm{COFF}} \\ \end{split}$$

C Events

This paragraph will be completed in near future.

References

- M. Ruder and D. Plasa. OpenTCI, Open Telescope Control Interface An open specification of a TPL2 based interface to control a telescope. 4pi systeme GmbH. 4PI-DOC-03-008-02.
- [2] M. Ruder and D. Plasa. TPL2, Transfer Protocol Language, V2 A protocol for client-server based exchange of data and commands over a TCP/IP network connection. 4pi systeme GmbH. 4PI-DOC-03-008-01.